Criterion C - Development

The product is a Java program. It takes in texts from the Pokemon Showdown game
and inputs from the user. It saves the Pokemon teams and notes inputted by the user
and uses it to process the advice and prediction in the game based on input texts from
the game.

-List of techniques-

File saving

JSON file reading

For loop

While loop

Arrays

ArrayList

Searching (linear search)

Error handling

GUI tabs

Simple and compound selection (if/else)
Making an array of objects

User-defined objects made from an OOP "template" class
Opening a file to a table

Methods returning a value

Parameter passing

-Notes-

The user types in the notes about a specific scenario in the game in the note tab. The
note will be saved by using a FileWriter variable and .write() method to write a file with
data from the note.

Sample Note Text-File

©ONOU A WNR

Xerneas.

Zygarde

Swap to either a full health PDon or a steel type Pokemon. After that just hit it until it dies
Arceus, Groudon, Solgaleo, Necrozma-Dusk Mane

Groudon, Arceus, Solgaleo

Xerneas.

Probably either Moonblast or Geomancy with power herb

Kyogre

, Rayquazal

-Structure of the Program-

The program have a total of 4 classes: Calculator, mainGUI, PokemonSet, and Type.
mainGUI uses PokemonSet to store text files of Pokemon teams. Calculator use Type
class to create methods for calculating Pokemon type multipliers, which will be used by
mainGUI. The Program was split into classes for better organization.

-Data Structure Used-
Arrays and Arrays of Objects

Arrays are utilized in any part of the program in order to organize both primitive data
types and objects in groups, which also allows them to be looped through more easily.
In the program, | used arrays to separate the words from a string in order to find a
keyword in the text from the game.

Sample use of an array of primitive type to split sentence:

String text = inhutTF.getText();
String[] words = text.split("\\s+");
String keyWord = "started";

iftke&Word.equals(words[i]))
{

Sample use of an array of object

ArrayList<String> multiplier4 = new ArrayList<String>();
Typelltypes = new Type[18];

double[]lnormalMultiptlier = {1,1,1,1,1,1,2,1,1,1,1,1,1,0,1,1,1,1};
types[0] = new Type("Normal",normalMultiplier);

ArrayList

In this program, ArrayList is used to contain and organize all the types of Pokemon
calculated from the calculator class. It's simpler and more straightforward to just use
ArrayList, which have a dynamic size, to store these types as opposed to using an
array, which have a fixed size.

Text Files

Text files were used as a means to save the recorded Pokemon teams and notes. An
example of saved notes can be seen above.

JSON Files

The information about every Pokemon (base stats and types) are saved in a JSON file
downloaded from the internet and is accessed by the mainGUI and PokemonSet class
in order to gain information about each Pokemon. It was done by initializing a JSON
object as the JSON file, then get the value out of that JSON object.

Sample code using JSON object to access information from the JSON file:

JSONObject pokemonName = (JSONObject) pokedex;

if (pokemonName.get (" name").equals(name)){

-Main Unique Algorithm-
Type Calculator Algorithm

The algorithm of the type calculator methods works by using Types object class, which
have attributes of a String of type name and an array of 18 doubles, which contains the
multipliers of that specific type as it interacts with another type. Then, the method
creates an array of all 18 types, with each element as a specific type with name and
type modifier array initialized. Each method will take in varying amounts of String
parameter which are names of the type in Pokemon.

The general algorithm of every type calculator method is as follow:

public ic ArrayList<String> eCalcl(Strin String second){
rayList<String> multiplierd4 = new ArrayList<String=(
Typelltypes = new Typel[18];
double[lnormalMultiplier = {1,1,1,1,1,1,2,1,1,1,1,1,1,0,1,1,1,1};
types[@] = new Type("Normal",nermalMultiplier);
double[]fireMultiplier = {1,0.5,2,0.5,1,0.5,1,1,2,1,1,0.5,2,1,1,1,0.5,0.5};
types[1] = new Type("Fire",fireMultiplier);
double[]waterMultiplier = {1,0.5,0.5,2,2,0.5,1,1,1,1,1,1,1,1,1,1,0.5,1};
types[2] = new Type('"Water",waterMultiplier);
double[]lgrassMultiplier = {1,2,0.5,0.5,0.5,2,1,2,0.5,2,1,2,1,1,1,1,1,1};
types[3] = new Type('grass",grassMultiplier);
double[lelectricMultiplier = {1,1,1,1,0.5,1,1,1,2,0.5,1,1,1,1,1,1,0.5,1};
types[4] = new Type("Electric",electricMultiplier);
double[]iceMultiplier = {1,2,1,1,1,@.5,2,1,1,1,1,1,2,1,1,1,2,1};
types[5] = new Type('"Ice",iceMultiplier);
double[] fightingMultiplier = {1,1,1,1,1,1,1,1,1,2,2,0.5,0.5,1,1,0.5,1,2};
types[6] = new Type('Fighting",fightingMultiplier);
double[]poisonMultiplier = {1,1,1,0.5,1,1,0.5,0.5,2,1,2,0.5,1,1,1,1,1,0.5};
types[7] = new Type('Poison",poisonMultiplier);
double[]groundMultiplier = {1,1,2,2,0,2,1,0.5,1,1,1,1,0.5,1,1,1,1,1};
types[8] = new Type('Ground",groundMultiplier);
double[]flyingMultiplier = {1,1,1,0.5,2,2,0.5,1,0,1,1,0.5,2,1,1,1,1,1};
types[9] = new Type("Flying",flyingMultiplier);
double[]psychicMultiplier = {1,1,1,1,1,1,0.5,1,1,1,0.5,2,1,2,1,2,1,1};
types [10] = new Type("Psychic",psychicMultiplier);
double[lbugMultiplier = {1,2,1,0.5,1,1,0.5,1,0.5,2,1,1,2,1,1,1,1,1};
types[11] = new Type("Bug",bugMultiplier);
double[lrockMultiplier = {0.5,0.5,2,2,1,1,2,0.5,2,0.5,1,1,1,1,1,1,2,1};
types[12] = new Type("Rock",rockMultiplier);
double[]lghostMultiplier = {o,1,1,1,1,1,0,0.5,1,1,1,0.5,1,2,1,2,1,1};
types[13] = new Type("Ghost",ghostMultiplier);
double[ldragonMultiplier = {1,@.5,0.5,0.5,0.5,2,1,1,1,1,1,1,1,1,2,1,1,2};
types[14] = new Type("Dragon",dragonMultiplier);
double[]ldarkMultiplier = {1,1,1,1,1,1,2,1,1,1,0,2,1,0.5,1,0.5,1,2};
types[15] = new Type('Dark",darkMultiplier);
double[]steelMultiplier = {o.5,2,1,@.5,1,0.5,2,0,2,0.5,0.5,0.5,0.5,1,0.5,1,0.5,0.5};
types[16] = new Type('Steel",steelMultiplier);
double[]fairyMultiplier = {1,1,1,1,1,1,0.5,2,1,1,1,0.5,1,1,0,0.5,2,1};
es[17] = new Type("fairy",fairyMultiplier);
if (1 (Sermmetai)) {
boolean typelFound = true; =
int typellndex = 8; —— ~
int i = 9; 3 Setting the
while(typelFound){ ™~ Array of
1f(flrst.equalsIg?ureCase(types[1].getTypeName())){ types and the
typellndex = i; \
typelFound = false; \ type
multipliers

i++;
H
boolean type2Found = true; .
int type2Index = 9; L
i=0; 1 nc
while(type2Found){ i sach
if(second.equalsIgnoreCase(types[i].getTypeName())){

type2Index = i;

type2Found = false;

)t

\ i++;
doublel] typel =—typesltypellndexityelTypeMultiplier();
double[] type2 = types[type2Index].getTypeMultiplier();
for(int o0=@;o<types.length;o++){
if (typellolxtype2[o]==1){

multiplierd.add(types[o].getTypeName());
H
}

return multiplierd;

Team and Notes Saving Algorithm

The algorithm involves getting String values from text fields and write them into a file
using Filewriter variable. The file was written in a specific order that, when the team was
searched up again, the file will be read and the value will be taken and shown in the
correct order in a table.

JSONObject pokemonName = (JSONObject) pokedex;
String pokeName = (String) pokemonName.get('name");

System.out.println(pokemonName.get("'name"));

Create a JSON object
to access the JSON
file

//Get employee object within list
JSONObject pokemonName = (JSONObject) pokedex.get('name");
//System.out.println(pokemonName.get ("name").equals(name));

if (pokeName.equalsIgnoreCase(name)){

try {
FileWriter myWriter = new FileWriter("./src/Filedata/"+ name + ".txt");

//System.out.printiln(pokemonName.get("name"));
//System.out.println(pokemonName.get("types"));
//System.out.println(pokemonName.get("base_stats"));
myWriter.write(name);
myWriter.write("\n"+ Arrays.toString(moves));
myWriter.write("\n"+ item);
myWriter.write("\n"+ ability);
myWriter.write("\n"+ pokemonName.get("types"));
myWriter.write("\n"+ pokemonName.get("base_stats"));
myWriter.write("\n"+ pokedex.get("type"));

JSONObject pokemonBase = (JSONObject)pokedex.get("base");
myWriter.write

myWriter.write
myWriter.write

"\n"+pokemonBase.get ("HP"));
“\n"+ pokemonBase.get("Attack"));
"\n"+ pokemonBase.get("Defense"));
myWriter.write("\n"+ pokemonBase.get("Sp. Attack"));
myWriter.write("\n"+ pokemonBase.get("Sp. Defense"));
myWriter.write("\n"+ pokgmomBasergel(!'Speed")); - o
mywriter.close(); - N

1 =~
)

JOptionPane.showMessageDialog(null, "Add Pokemon success!"); |
pokemonTF.setText(""); L/
movelTF.setText(""); /

| move2TF.setText("");

| move3TF.setText("");
move4TF.setText(""); >,

; itemTF.setText("");

\ abilityTF.setText(""); e —_—

\ errorTF.setText(". "
_ setOk(false); _~

\
\

Move Prediction Algorithm

The algorithm is a pile of if/else statements with conditions of checking the stats, types,
and moves of both opponent’s and user’'s Pokemon on the field. The Pokemon on the
field are detected through reading the input text from the game. The stats of the
Pokemons are taken from a JSON file downloaded from the internet and found through
searching for the Pokemon name in the file.

Sample code of reading JSON file and searching for content with a specific keyword
(Pokemon name):

JSONParser jsonParser = new JSONParser();
try (FileReader reader = new FileReader("pokemon.json™))

{

Object obj = jsonParser.parse(reader);
JSONArray pokemon = (JSONArray) obj;
pokemon. forEach(item -> {

JSONObject pokemonName = (JSONObject) item;

String name = (String) pokemonName.get("name");

The move prediction follows this flow chart:

Print "Use any attack
that would deal the

Check Oppanent's type and
our Pokemon type on the
field

have higher speed
attack they used is super effective have less than 307
Sp. attack base stat i)

against our Pokemon then ke cproment? higher than 1007

Print "Switch o some:
unimportant
Pokeman" in the
‘advice box and print
“The opponent will

ves
Thetrfype is supereﬂenllvﬁ@k So8s your Fokemon ”
o B Daes your Pokemon Does your Pokemon
r(4 or 2 times multiplier) or the lagt have hh alth higher -]7 e e SHAR o AR Does the opponent
)%?
o

N ,7\@5

probably atiack it"in "Either set-up o,
the prediction box sm:h ta something |
with type advantage” |

Isit the attack stat Does me appunem print “Attack the
thatis mghal than No_»| _ OPPONeNt" in the
De!ense mqhev than advice box and print | |
"the opponent might | (in the advice box and |
switch to something

with type advantage,

highest base damage. If
lhere s a move thal is not
included in the JSON file,
just skip the move

super effective move
Does the opponent e sill f
Dogs the opponent's is sl a logical
Does it have more el P““’“O” el ha:‘e iaiThDelen:e psithet] decision*n the
than 80% Hoalth gty o then 60 prediction box

e
= and attackinthe |

but attacking it with a
rediction box

V fes
| [Attack the nppﬂnem’\i

Does your Pokemon | print “Tank the hit and : in the aduice box and)

J have base "Sp. | . . |Use & super afoctve | print "The opponert

No—> defense" stat higher anoclin (o acvico will probably switch,

__ than100?) box and print "The but there is a chance

PO that they will stay in.

No probably attack it' in Urturn'? They VAT more TRely

the prediction box. switch though.” in the

*_prediction box.
daden print "switch to ks

something that you're:
sure it can tank the

Dues yuur Pokemon
have bas
hit, or just go ahead

Print "Switcn to a pokemon

— Ty with type advantage” in the

mqherlhan 1007

Py box and print “The
Yos and;soeics o the Does it have move bk prabasl atock 1 e
advics box and print Nokswicn: [eon box
orint “Tank the it and 2
use a super effective the prediction box Yes
attack” in advice box,)
and print “The o n
opponent will Is the oppor
orobably attack ftwith prediction box “ground® Wne f Yes

a super effective
move" in the
prediction box No

pokemon?
. .

effective against the

opponent in acvice box
and print "they will
probably attack t* in the
rediction box

-GUI Works-

Text Fields
Text Fields are used in 2 ways in this program: to display output texts(notes and advice)

and to take in the input text.

Predicted Opponent's Next Move I -

Your Pokemon's Weakness I n put Texts Pas te I n put

Your Advised Next Move and Reminder

Opponent's Pokemon's Weakness

Opponent's Pokemon Possible Moves

Pokemon 1 T}

Process Input

Buttons
Buttons are implemented to give the user an ability to
make a process occurs.

Start Game

End Game

Radio Buttons
Radio buttons are implemented to give

the user an ability to choose between 2 Search by Pokemon Name
choices on how the Notes tab functions.

Search by Note Name

Opponent's Pokemon Stats

Combo Boxes

Combo boxes are used to allow the user to choose between multiple options, such as

choosing Pokemon to view stats.

Tables

Tables were used to display information about a Pokemon

team and base stats of the opponent’s Pokemon.

Pokemon Move 1 Move 2 Move 3 Move 4 Item

-Software Tool Used-

The software tool used is the Netbeans IDE 8.2.
It's one of the more popular Integrated
Development Environment(IDE) for Java. It
allows the programmer to code in Java,
organizes the OOP hierarchy and files, and easily
create GUI for the program, as seen in the
pre-packaged GUI components shown on the
right.

Ability

Stat Type Base Sats
Palette I =
¥ Swing Containers
[panel [Tabbed Pane |[Split Pane |H Scroll Pane
[[Z Tool Bar ':—‘3 Desktop Pane E Internal Frame |1| Layered Pane

¥ Swing Controls

1=l Label

[~ Check Box
[Ef List

[] Text Field
I{_XI Text Area
LI=] Spinner

|§| Editor Pane

(0] Button

®— Radio Button
LT Scroll Bar

[Progress Bar
[=7] Formatted Field
|—| Separator

@ Tree

[GH] Toggle Button
5~ Button Group
b Slider

[I=] Combo Box
[=-] Password Field

| T| Text Pane
I;I Table

Word Count: 848

